Hybrid AI : Integration of Rule-Driven and Data-Driven Approaches for Enhanced Autonomous Robotics

Ezio MALIS Research Director

ACENTAURI

Centre Inria d'Université Côte d'Azur

SCIENTIFIC OBJECTIVES

- Develop real-time perception of complex and dynamic environments in order to build large scale semantic representations that can be shared to other robots
- Develop intelligent robots able to
 - i. decide their actions in real-time
 - ii. manage uncertainty
 - iii. predict in real-time the future states
 - iv. acquire new capacities
- Develop autonomous collaborative robots able to accomplish complex task taking high-level cognitive-based decisions without human intervention

A definition of intelligence

- Intelligence is the ability to acquire, understand, and apply knowledge and skills.
- Intelligence allows to adapt to new situations, think abstractly, comprehend complex ideas, and learn from experience.
- Intelligence is often considered a combination of both a priori knowledge and experiences.
- It may not be limited to academic or theoretical knowledge but may also includes practical and emotional aspects, such as social understanding and empathy (interaction with humans).

A priori knowledge	

- Well known rules / relationships
- Scientific knowledge
- Expert knowledge

A priori knowledge	 Well known rules / relationships Scientific knowledge Expert knowledge
Actual knowledge from perception	 Indirect perception (metadata,) Direct perception

A priori knowledge	 Well known rules / relationships Scientific knowledge Expert knowledge
Actual knowledge from perception	 Indirect perception (metadata,) Direct perception
Experience	 Episodes used in the learning Correlation between observations

A priori knowledge	 Well known rules / relationships Scientific knowledge Expert knowledge 	
Actual knowledge from perception	 Indirect perception (metadata,) Direct perception 	RULE-BASED METHODS
Experience	Episodes used in the learningCorrelation between observations	

A priori knowledge	 Well known rules / relationships Scientific knowledge Expert knowledge 	
Actual knowledge from perception	 Indirect perception (metadata,) Direct perception 	DATA-BASED METHODS
Experience	 Episodes used in the learning Correlation between observations 	

A priori knowledge	 Well known rules / relationships Scientific knowledge Expert knowledge 	
Actual knowledge from perception	 Indirect perception (metadata,) Direct perception 	- HYBRID AI METHODS
Experience	Episodes used in the learningCorrelation between observations	

Innía ACENTAURI

HYBRID METHODS CLASSIFICATION

EXAMPLE: HYBRID STEREO ODOMETRY

Z. Liu, E. Malis, P. Martinet: "A new dense hybrid stereo visual odometry approach", IROS 2022.

Z. Liu, E. Malis, P. Martinet: "Multi-masks Generation for Increasing Robustness of Dense Direct Methods", ITSC 2023.Z. Liu, E. Malis, P. Martinet: "One-stage deep stereo network", ICASSP 2024.

Innia ACENTAURI

COMPARISON WITH OTHER METHODS

Type	Depth Error		Depth Accuracy		Pose Error		Time/ms					
Type	abs rel	rel sqr	rmse	rmse log	1.25	1.25^2	1.25^{3}	t _{err}	r _{err}	RPE _{tran}	RPE _{rot}	11110/1115
Soft												
SFMLearner ³ [13]	0.1482	2.7122	5.0126	0.2497	89.59	93.96	96.10	2.32	0.66	0.024	0.039	137.6
Bayesian [39], [20], [7]	0.3186	12.3994	9.1111	0.3943	86.29	90.91	93.40	2.64	0.70	0.024	0.039	154.6
Binary												
Principled ⁴ [17]	0.3431	14.2719	9.7451	0.4090	85.83	90.46	93.06	2.90	0.74	0.023	0.039	209.8
monodepth2 ⁵ [12]	0.0781	0.5958	3.6738	0.1747	91.67	95.95	97.76	5.17	1.66	0.026	0.045	121.7
Ours	0.0665	0.4731	3.3050	0.1460	93.37	97.20	98.65	1.54	0.45	0.021	0.032	209.6

Vear	model	seq.9	seq.10	
ycai	model	ATE	ATE	
	model-based			
2015	ORB full [2]	$0.0140{\pm}0.0080$	0.0120 ± 0.0110	
2015	ORB short [2]	$0.0640 {\pm} 0.1410$	0.0640 ± 0.1300	
	end-to-end			
2017	SfmLearner [6]	$0.0160 {\pm} 0.0090$	$0.0130 {\pm} 0.0090$	
2018	Geonet [21]	$0.0120{\pm}0.0070$	$0.0120 {\pm} 0.0090$	
2018	Vid2depth [33]	$0.0130 {\pm} 0.0100$	$0.0120 {\pm} 0.0110$	
2019	Com Col [22]	$0.0120{\pm}0.0070$	$0.0120{\pm}0.0080$	
	hybrid			
2019	UnOS [32]	$0.0120 {\pm} 0.0060$	$0.0130 {\pm} 0.0080$	
	Ours	0.0109±0.0068	0.0105±0.0088	

RESULTS ON KITTI DATASET

RESULTS ON KITTI DATASET

RESULTS ON KITTI DATASET

CONCLUSION

- Hybrid AI can overcome the limitations of individual methods. For example, combining rule-driven AI's interpretability with machine learning's data-driven adaptability.
- Hybrid AI is a large field of research since there exists many possible ways to combine rule-based and data-based AI
- Future research directions:
 - Understand if it exists a preferred and systematic way to combine rule-based and data-based AI
 - Apply the methodology at all levels: perception, decision and control

