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Résumé
L’apprentissage profond est efficace pour la détection
du cancer de la peau à partir d’images de lésions.
Cependant, son adoption pratique reste limitée par le
manque d’explication derrière ses décisions. Notre mod-
èle n’échappant pas à la règle, nous l’analysons à partir de
deux règles de diagnostic dermatologique. Premièrement,
nous proposons un outil de visualisation pour fournir aux
praticiens un contexte supplémentaire à la décision de notre
modèle. Deuxièmement, nous présentons une variante du
modèle basée sur des concepts médicaux, qui améliore
l’interprétabilité du modèle initial.
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Abstract
Deep Learning is successful at detecting skin cancer from
a lesion image, but its practical adoption is limited by the
lack of explanation behind its decisions. The model we de-
velop is no exception; we aim to analyze it based on two
dermatology rules for lesion diagnosis. First, we propose a
visualization tool to give practitioners additional context to
our model’s decision. Second, we introduce a model variant
based on medical concepts that enhance the interpretability
of the baseline model.
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1 Introduction
Skin cancers, including melanoma, are one of the most
common cancers in the world [19]. Early diagnosis is cru-
cial to reduce morbidity and mortality [16]. Human diag-
nosis is based primarily on visual inspection, often with a
dermatoscope for more details, and comprehensive rules.
The ABCD rule [15] and the 7-point checklist (7PCL) [2]
are the most common. The ABCD rule provides a deci-
sion based on asymmetry, border irregularity, color varia-
tion, and dermoscopic structure of the lesion, while the 7-
point checklist (7PCL) provides a score based on 7 visual
signs to detect suspicious lesions.

Recent advances in Deep Learning have been successfully
applied to skin lesion classification, as neural networks out-
perform dermatologists [8]. In this trend, we developed a
CNN-based tool to assist dermatologists12. For now, the
model lacks interpretability and it is not yet able to give
explanation to doctors to motivate their decision. This lim-
its the trust practitioners have in Artificial Intelligence (AI)
and thus its adoption. Moreover, training data itself con-
tains biases non-meaningful for humans but exploited by
classification models [3]. Understanding and quantifying
how much of the decision aligns with medical concepts
versus biases indicates the model’s robustness. This paper
aims to give insights into our neural network’s behavior and
provide meaningful explanations to practitioners.

Contributions
After briefly introducing our neural net for skin lesion clas-
sification, we illustrate biases in the dataset to motivate fur-
ther our developments, which are summarized as follows:

1. We develop non-neural algorithms to assess the crite-
ria of the ABCD rule as a tool for practitioners.

2. We analyze the medical concepts learned by our model
using the 7PCL.

3. We transfer our model to a concept-based model to
explain its decision based on medical signs.

Related works
There have been massive efforts to develop neural networks
for skin cancer prediction [10], partly driven by the chal-
lenges hosted by the International Skin Imaging Collabora-
tion (ISIC) between 2016 and 2020 [6] that crowned win-
ners [5, 7] at each session. The ongoing IToBoS3 European
consortium aims for a Computer Aided Diagnostics tool for
melanoma and emphases providing valuable explanations
for practitioners.
Explainable AI (XAI) has been applied to skin cancer clas-
sification, as recently reviewed [9]. Most approaches fo-
cus on post-hoc explanations via heatmap [22] or feature
importance [18], which requires human interpretation and
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Figure 1: Left: input image. Right: image with box mask.

is prone to confirmation bias and cherry-picking. Few ap-
proaches incorporate interpretability, for instance, by pre-
dicting medical signs [11] or by retrieving visually similar
images [21]. As often in XAI [13], a trade-off appears be-
tween classification accuracy and explainability.

2 Method
We first describe our skin lesion classification model and
conduct a brief experiment to show that the dataset is bi-
ased. The need to enhance doctors’ trust motivates us
to investigate a posteriori how well the model decision
aligns with dermatology concepts and to introduce an in-
terpretable concept-based model.

2.1 Classification model and dataset
Our model is based on an efficientnet-b4 [20], pre-trained
on ImageNet, to extract embeddings and one classification
head (2 linear layers with final Sigmoid activation) to pre-
dict the skin cancer class. A focal loss is used to train the
model. The model predicts 10 classes, but we focus the
explanations on benign vs malignant classes.
We used an internal dataset of 104, 000 images. Inspired by
a previous approach [3] revealing biases in the ISIC dataset,
we investigate how biased our dataset is. Indeed, the pres-
ence of biases creates spurious correlations that the model
may exploit instead of meaningful information, leading to
a seemingly better accuracy but lower robustness. We re-
produce part of their methodology by training and testing a
new model on altered images where a box mask covering
70% of pixels is applied, hiding the entirety of the lesion,
as illustrated in Figure 1.
When comparing the baseline model with the one trained
with box mask (see Table 1), classification performances
drop, but they are far from random, i.e., predicting class
based on frequency in the train set. The AUROC is even
similar to the performances of dermatologists [4] (assessed
on a different train set). Since the model can make better-
than-random classification when the lesion is masked, we
deduce the existence of spurious correlations within the
dataset. This motivates the importance of knowing which
information the model uses, as we investigate in the follow-
ing sections.

2.2 Post-hoc interpretability
2.2.1 Applying the ABCD rule
The ABCD rule is a simple yet effective tool for derma-
tologists to assess pigmented lesions for potential malig-

Baseline Box model Random Doctors

Accuracy 73% 35% 17.8% -
AUROC 0.92 0.68 - 0.67 [4]

Table 1: Classification metrics on internal test set.

nancy [15]. Here, we apply each ABCD criterion as an
image-processing technique to analyze dermoscopic im-
ages. We leverage it to provide additional visual informa-
tion to clinicians, as illustrated in Figure 2. We additionally
derive metrics from ABC criteria to study their correlation
with our dataset’s ground truth.

Asymmetry. Irregular shapes and uneven color distribution
are strong indications of melanoma. We quantify asymme-
try by first isolating the lesion using segmentation. Then,
we identify potential symmetry axes based on the seg-
mented region’s shape. Crucially, these axes are informed
by the prior shape asymmetry analysis, ensuring color as-
sessment aligns with potential shape irregularities. If there
is no symmetry in the shape, there will be no symmetry in
colors. We calculate the Intersection over Union (IoU) be-
tween the lesion and its mirrored counterpart for each axis,
considering both shape and color distribution weighted by
color presence. A significant deviation from an IoU of 1 (in-
dicating perfect overlap) suggests asymmetry, potentially
signifying melanoma.

Border irregularity. Smooth borders are characteristic of
benign lesions. Conversely, melanomas often exhibit
notched, sharp, or uneven borders. We assess border reg-
ularity using the convex hull method. By comparing the
convex hull representing the smallest convex shape encom-
passing the entire lesion, we highlight the discrepancy be-
tween its boundaries and its convex hull. This highlights
the number of deviations and indicates the lesion irregular-
ity and its potential malignancy.

Color variation. To analyze color variation — melanomas
often exhibit a mix of brown, black, blue, white, and red
hues compared to uniformly brown benign nevi — we per-
form image normalization. This ensures a consistent color
basis across images, addressing illumination variations.
We then segment the lesion into smaller regions and
compute the most frequent color in each, based on a
dermatologist-defined list [17].

Differential structures. When visualizing features and pat-
terns within a lesion through dermoscopy, dermatologists
refer to differential structures — or dermoscopic structures
— such as the pigment network and vascular patterns as in-
dicators of malignancy. Atypical features like blue-white
veil or irregular pigmentation are strongly associated with
melanoma. We leverage the Meijering filter [14] to analyze
these structures.

2.2.2 Testing learned concepts
We further analyze the concepts learned by the model us-
ing medical annotations. The Interactive Atlas of Der-
moscopy [1] contains 1011 dermoscopic images with diag-



Figure 2: Applying the ABCD criteria on a dermoscopic image featuring a melanoma (best viewed in color). a. The original
dermoscopic image pad to a square format. b. From left to right: the asymmetry, border, color, and dermoscopic structure
criteria applied to the dermoscopic image. Top row: the best symmetry axis found based on shape and color, the border of the
lesion in green with its inner and outer border in red, the normalized image, the highlighted in green dermoscopic structure.
Bottom row: all the symmetry axes found with an IoU of at least 0.9, the convex hull based on the detected border of the
lesion in yellow, the detected border of the lesion in red, and the deviations as pink dots, the color variations inside the lesion,
the enhanced result of the Meijering filter.

nosis and a label for each sign of the 7PCL. These signs
describe patterns in the lesion, such as streaks, dots and
globules or pigmentation, some of them indicating a sus-
picious lesion. Our model never sees this dataset.
We use those signs as medical concepts and test whether
our model uses them with the Testing with Concept Acti-
vation Vector (TCAV) approach [12]. We first create two
banks of lesion images for each sign of a suspicious lesion:
one bank containing the malignant sign and one without it
(i.e., sign labeled as "absent" or "regular" or "typical"). We
fit a linear classifier with class weights to separate the em-
beddings into two classes. A concept is the vector normal
to the decision boundary. We then test if this concept is im-
portant for a class (nevus or melanoma) using a third bank
of images of the class, with no overlap with the other two
banks. For each image, the derivative of the class logit w.r.t
the embedding is computed. The TCAV score is the ratio
of images whose derivative is in the same direction as the
concept vector (i.e., positive dot product). A score near 1
means the concept is important for the class, while a score
around 0.5 corresponds to a random concept.

2.3 Interpretability by design
The TCAV method gives insight into the global model be-
havior but does not provide a precise explanation for a sin-
gle image. Thus, we explore an alternate model that pre-
dicts the 7 signs of 7PCL instead of predicting classes. The
lesion is detected as malignant if it has a score higher than
3. The decision is then made based on detected signs: a ma-
jor (resp. minor) sign gives 2 (resp. 1) points, and the lesion
is suspected as malignant if it has a score of 3 or more.
As the Atlas dataset is small, we do not train the new model
from scratch but reuse the previous encoder and freeze its
weights. We train 7 classification heads (single lineal layer

with Sigmoid each), one for each sign. The loss rewards a
correct classification of each sign individually (using cross-
entropy) and a correct diagnosis by comparing the true
score to the score computed from predicted signs. Models
are trained until the mean validation accuracy increases.

3 Results
We first analyze our baseline model’s decision a posteriori
and compare it to its interpretable concept-based version.

3.1 Post-hoc interpretability
ABCD rule. We assess whether the criteria we derived
from the ABCD rule can be used as an indicator for practi-
tioners, along with the class prediction. Most of our criteria
are visual, as illustrated in Figure 2. We add quantitative re-
sults by comparing 3 distributions for benign and malignant
classes (including melanoma, basal cell carcinoma, and epi-
dermal tumors). We consider the number of orthogonal
symmetry axes (to within 20 degrees), the highest distance
between the lesion’s actual border and the convex hull, and
the number of colors in a single lesion. As shown in Fig-
ure 3, we observe a distribution shift between benign and
malignant lesions on the 3 criteria. As expected, malignant
lesions tend to have fewer symmetry axes, a border further
away from its convex hull, and contain more colors.

The classification uses medical concepts. We test the im-
portance of each sign of 7PCL for the classification with
TCAV, each sign corresponding to a concept. For each sign
and each class, the concept is computed 10 times on random
train/test splits of images with and without concept.
As displayed in Figure 4, all signs of the 7PCL are impor-
tant for classifying a melanoma, with scores ∼ 1. On the
contrary, all signs disfavor the nevus class.



Figure 3: Assessing asymmetry (left), border irregularity (middle), and color variation (right) criteria on the test set. Brown is
the overlap between two distributions.

Figure 4: TCAV on the 7PCL, mean and std on 10 runs.

3.2 Interpretability by design
We first assess the interpretable model by its average binary
accuracy on each sign (malignant/benign) and the mean ab-
solute error (MAE) between the resulting score and the true
score. For reference, true scores range from 0 to 7. Table 2
displays that accuracy averaged over signs is better with
CE-only training, but the resulting score is further from the
true score. The accuracy is surprisingly low: even if the
concepts derived from these signs are important for the clas-
sification model, it cannot recognize their presence reliably.
This could be due to the small size of the Atlas dataset.

Training MSE+CE CE-only

Mean acc. 74.4% 75.9%
MAE 1.41 1.71

Table 2: Test metrics on interpretable models.

The 7PCL aims to detect malignant lesions (melanoma or
other). We define a binary classification task on the Atlas
test set: predicting whether a lesion is malignant or benign.
In Table 3, we compare our baseline model with the inter-
pretable version. None of them has been explicitly trained
on this task: the baseline predicts 10 different classes, while
the interpretable model predicts 7 signs on which the 7PCL
decision rule is applied. Interestingly, training the inter-
pretable model under MSE+CE is beneficial in terms of di-

agnosis vs using CE only, even if individual sign prediction
is lower. As expected [13], the interpretable model suffers
from a drop in performance compared to the baseline.

Model Baseline Interpretable CE-only

2-class acc. 85.2% 76.8% 72.8%

Table 3: Models comparison on binary classification.

4 Conclusion
We presented some developments to explain the predictions
of our model for skin lesion classification. First, we aim to
ensure the model uses relevant medical concepts, not the
dataset’s spurious correlations. Second, since this tool is
developed for practitioners, we seek to enhance their trust
in AI. Therefore, we based our effort on two rules used by
dermatologists: the ABCD rule and the 7-point checklist.
We derived criteria from the ABCD rule, both visual and
numerical, using non-neural algorithms to provide addi-
tional information for the neural net classification. We
showed that our model uses the medical concepts in the
7PCL, and we derived a more interpretable model predict-
ing each of the seven signs. As expected, a trade-off ap-
peared between explainability and performance in the bi-
nary classification of malignant lesions from benign ones.

Future work
This paper presents our first efforts toward a more inter-
pretable skin cancer detection model, which can be ex-
tended in several directions. First, doctors could be inter-
viewed about the usefulness of providing additional infor-
mation to the class prediction with our ABCD-derived vi-
sual criteria. Second, some of the performance loss of the
interpretable model may be recovered without losing expla-
nations by fitting a residual term [23] based on non-7PCL
information. Moreover, this model is limited to binary clas-
sification, so it is unable to distinguish skin lesion classes.
Extending it will require more data annotated with con-
cepts. Some masks are available in the ISIC dataset but
are not as precise as the 7PCL. This could be handled with
missing information training.
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