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Résumé
Les signaux EEG sont souvent bruités, c’est pourquoi, pour
étudier des caractéristiques telles que la connectivité fonc-
tionnelle, nous devons nous assurer que nos mesures de
connectivité sont résilientes au bruit. Cette étude propose
d’exploiter la distance élastique (DTW, Dynamic Time War-
ping) comme mesure de connectivité fonctionnelle. Nous
montrons que la DTW est plus robuste au bruit que la me-
sure basée sur l’estimation de phase (PLI, Phase Lag In-
dex), cette dernière étant très utilisée dans la littérature.
Nous montrons également que la DTW avec contrainte de
Sakoe-Chiba permet une caractérisation fine de la connec-
tivité comparée à la DTW sans contrainte.
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Abstract
EEG recordings are often noisy, therefore to study features
such as functional connectivity, we need to ensure that our
connectivity measures are resilient to noise. This study pro-
poses to exploit elastic distance (DTW, Dynamic Time War-
ping) as a measure of functional connectivity. We show that
DTW is more robust to noise than the measure based on
phase estimation (PLI, Phase Lag Index). The latter is wi-
dely used in the literature. We also show that DTW with
Sakoe-Chiba constraint leads to a finer characterization of
connectivity than DTW without constraint.
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1 Introduction
Electroencephalography (EEG) is increasingly recognized
as a useful non-invasive neuroimaging technique to mea-
sure cortical neurophysiological activity. Indeed, EEG pro-
vides an excellent time resolution that is crucial for ana-
lyzing fast brain dynamics. Nevertheless, EEG signals are

non stationary and often subject to environmental noise,
possible acquisition problems in the EEG settings, as well
as physiological artifacts such as involuntary contractions
of the eyes and the heartbeats of the subjects.
The analysis of EEG signals in the context of neurodege-
nerative diseases often relies on the computation of func-
tional connectivity. Connectivity is a way to track the dyna-
mics between the signals recorded with different electrodes,
thus reflecting the functional interactions among cortical
processes. It is generally computed pairwise between EEG
signals. A good estimation of connectivity is highly de-
pendent on the level of noise in EEG signals.
It is well admitted that connectivity decreases in pa-
tients suffering from dementia, particularly Alzheimer’s
Disease, comparatively to age-matched healthy subjects
[Briels et al., 2020, Abazid, 2022]. Several connectivity
measures have been proposed in the literature, such as
Phase Lag Index (PLI) [Stam et al., 2007], Amplitude Enve-
lope Correlation [Briels et al., 2020], and Mutual Informa-
tion [Jeong et al., 2001]. Our research team currently inves-
tigates the potential use of Dynamic Time Warping [Senin,
2008] distance (DTW) as a connectivity measure to distin-
guish between several cognitive disorders.
DTW is an elastic distance that allows to dynamically
match two signals in order to follow the temporal fluctua-
tions in such nonlinear signals. It has already been used in
EEG analysis, but mainly for artefact detection [Shaw et al.,
2017]. To assess the effectiveness of DTW as a connecti-
vity measure in the context of neurodegenerative diseases,
we need to study its resilience to noise, since EEG signals
are prone to a low signal-to-noise ratio (SNR).
In this work, we intend to study the robustness of DTW to
variations in the levels of noise, comparatively to the largely
used PLI in the context of neurodegenerative diseases. Also,
we propose to investigate the impact of adding a Sakoe-
Chiba [Sakoe and Chiba, 1978] constraint on the connecti-
vity characterization. We conduct such analyses by conside-
ring three populations : patients with Subjective Cognitive
Impairment (SCI), patients with Mild Alzheimer’s Disease
(AD) and patients with Vascular Dementia (VaD).



TABLE 1 – Characteristics of patients in the cohort.
MMSE : Mini-Mental State Examination ; M : Mean, SD :
Standard Deviation, BZD : Benzodiazepin use, ADP : An-
tidepressant use, NL : Neuroleptic use, HN : Hypnotic use.

SCI (n=32) AD (n=46) VaD (n=17)
Age (M ± SD) 68.2 ± 10.4 82.0 ± 8.6 80.0 ± 7.6
Female (%) 81.8% 67.4% 35.3%
MMSE (M ± SD) 28.3 ± 1.6 19.0 ± 5.6 20.0 ± 5.1
BZD use (%) 4 (12.5%) 6 (13.0%) 3 (17.6%)
ADP use (%) 5 (15.6%) 14 (30.4%) 3 (17.6%)
NL use (%) 0 (0%) 1 (2.0%) 1 (5.9%)
HN use (%) 5 (15.6%) 4 (8.7%) 0 (0%)

2 Material and Methods
2.1 Database Description
The cohort used to conduct this retrospective study is com-
posed of resting-state EEG data of 32 SCI patients, 46 Mild
AD patients and 17 VaD patients, acquired in a clinical
setting at Charles-Foix Hospital (Ivry-sur-Seine, France).
Table 1 presents their demographic and clinical characte-
ristics. The study was approved by the institutional review
board of the local Ethics Committee Paris 6 and the Ethics
Committee of Sorbonne University (N°CER-2021-064).
EEG signals were recorded at rest with eyes closed at a fre-
quency sampling of 256Hz during 20 minutes at least, by
taking care that the patients were not falling asleep. Thirty
electrodes were used, placed on the scalp according to the
10-20 international system : Fp1, Fp2, F7, F3, Fz, F4, F8,
FT7, FC3, FC7, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3,
CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, and O2.
The EEG signals were visually inspected to discard the
parts of the signals presenting artifacts. Thereby, conti-
nuous signals of 20 seconds free from artifacts were then
kept for the study. The obtained 20s EEG signals were then
band-pass filtered with a third-order Butterworth filter in
the frequency range [1-30] Hz, as well in the usual fre-
quency bands of interest : delta [1-4] Hz, theta 1 [4-6] Hz,
theta 2 [6-8] Hz, alpha 1 [8-10], alpha 2 [10-12] Hz and
beta [12-30] Hz.

2.2 Methodology
For each patient, we compute his/her functional connecti-
vity between all pairs of EEG signals with DTW and PLI
that we present in the following sections.

2.2.1 Phase-Lag Index
PLI is generally computed between a pair of signals accor-
ding to the following formula [Stam et al., 2007] :

PLI = | < sign(∆Φ(tk)) > |

where 〈.〉 represents the mean (over index k), “sign” denotes
the signum function that discards phase difference of 0 mod
π, |.| is the absolute value and ∆Φ(tk) indicates the phase
difference between two time series at time tk.

2.2.2 Dynamic Time Warping Distance
DTW distance [Senin, 2008] is an elastic matching metric
obtained by a dynamic programming algorithm that quan-
tifies the similarity between two time series showing a po-
tential temporal drift or shift.
The computation of DTW distance between two EEG si-
gnals S1 and S2 of length N, consists in a recursive
construction of the cost matrix. By design, the last com-
puted value, which has the coordinates (N, N) contains the
value of DTW between the two signals.
In order to improve the above procedure for DTW calcula-
tion, it is possible to apply a warping window to limit the
shifting that is tolerated when matching observations in the
two EEG signals. This method is called the Sakoe-Chiba
band constraint [Sakoe and Chiba, 1978].

2.2.3 Study of the Resilience to Noise
To compare DTW and PLI in terms of their resilience to
noise, we propose to study the impact of adding Gaus-
sian white noise to original EEG signals on the computed
connectivity values for the 32 SCI patients.
This way, we calculate all the pairwise connectivity values
for each patient on the original signals, as well as on the
six generated signals with different SNR values (0dB, 5dB,
10dB, 20dB, 40dB, 60dB) obtained as follows :

SNRdB = 10log10(
Psignal

Pnoise
)

Then, we compute connectivity with PLI and DTW, consi-
dering for the latter two cases : unconstrained DTW (re-
ferred as DTW), and DTW with a Sakoe-Chiba constraint
(denoted as DTW_6) that integrates a warping window size
fixed to six.
To assess the effect of added noise on the connectivity
values, we measure the deviation between the (30, 30)
connectivity matrix obtained on the noisy signals and that
obtained from the original signal, by computing the average
Euclidean Distance between such matrices for each patient.

2.2.4 Study of the impact of Sakoe-Chiba Constraint
We propose to analyze the quality of characterization of
the connectivity in SCI, AD and VaD populations on ori-
ginal signals, using DTW with and without Sakoe-Chiba
constraint.
Thereby, after computing the (30, 30) DTW matrices, we
take the inverse of the obtained distances to have similarity
values (connectivity values), and normalize them between
’0’ and ’1’ per electrode with min-max procedure.
Then, we define 8 brain regions for connectivity analysis :
prefrontal/frontal (Fp1, Fp2, Fz), frontal left (F7, F3, FT7,
FC3), central (FCz, C3, CZ, C4), frontal right (F4, F8, FC4,
FT8), temporal left (T3, TP7, CP3, T5), parietal (P3, Pz,
P4), temporal right (T4, CP4, TP8, T6), and occipital (O1,
Oz, O2) region. We estimate the intra-region connectivity
by averaging the connectivity values on all pairs of EEG
signals associated to the considered region. We also esti-
mate inter-regions connectivity by averaging the connecti-
vity values on all pairs of EEG signals associated to such



regions. Hence, for each patient, we obtain a (8, 8) sym-
metric region-based connectivity matrix, where the diago-
nal contents the 8 intra-region connectivity values, the up-
per or lower triangular matrix contains the 28 inter-regions
connectivity values.
We also define three types of connectivity ranges :
(i) "short-range" connectivity corresponding to the intra
connectivity values ; (ii) "mid-range" connectivity defined
as the connectivity between two regions that are 1-hop
neighbors ; and (iii) "long-range" connectivity that gathers
all the connectivities between two regions that are 2-hops
neighbors or more.

3 Experimental Results
3.1 Assessment of Resilience to Noise
Figure 1 displays the deviation values computed with Eucli-
dean distance between the connectivity matrix obtained on
noisy signals and that obtained on the original signal, using
PLI, DTW and DTW_6. We report the average deviation va-
lues on the 32 SCI patients, as well as the 95% confidence
intervals. For clarity of visualization, we display the values
on the Y axis with a square root scale.
We first observe that as the amount of noise in data in-
creases (from SNR=60dB to SNR=0dB), the deviation va-
lues increase for all connectivity measures, albeit more
markedly for PLI than the two DTW configurations until
SNR=20dB. For very low SNR (10dB and 0dB), the beha-
vior of the three measures become similar.
Besides, we observe that PLI is more affected than DTW_6
and DTW for all frequency bands even for low noise
(SNR=60dB). Such effect increases for increased noise
(SNR=40dB), while both DTW configurations show more
stable values for SNR=60dB and SNR=40dB. Therefore,
DTW-based connectivity measure is more resilient to noise
than PLI ; however, we do not observe a difference between
DTW computed with and without Sakoe-Chiba constraint
in terms of robustness to noise.

3.2 Impact of Sakoe-Chiba Constraint on the
Characterization of Connectivity

We report in this section only the results obtained in theta 2
but similar conclusions can be drawn from the other bands.
Figure 2 shows the (30, 30) connectivity matrices of three
SCI patients obtained on the one hand with DTW_6 (on the
left of Figure 2), and on the other hand with DTW (on the
right of Figure 2).
We note that matrices obtained with DTW are less contras-
ted than those obtained with DTW_6, presenting more uni-
form connectivity values with high values concentrated in
the top right corner. This first result may indicate that
DTW_6 gives rise to a fine characterization of functional
connectivity.
To go deeper in our analysis, we generate the connecti-
vity matrices with DTW and DTW_6 for all SCI, AD and
VaD patients. Then, we compute 8 intra- and 28 inter-
region connectivity values per patient, as explained in Sec-
tion 2.2.4.

To investigate the impact of using DTW and DTW_6 on the
overall population structure and characterization, we apply
Principal Component Analysis (PCA) [Maćkiewicz and Ra-
tajczak, 1993] on the obtained feature vectors of SCI, AD
and VaD patients, each contains 36 connectivity values.
Figures 3.a and 3.b show SCI, AD and VaD patients pro-
jected onto the PCA space spanned by the first two prin-
cipal components, based on connectivity values computed
with DTW_6 and DTW, respectively. We observe that the
distinction between the three classes seems to be clearer in
the case of DTW_6 than in the case of DTW. Indeed, the
samples on the top right corner that mainly correspond to
VaD patients (in blue) are better separated from the rest of
patients with DTW_6. Also, SCI and AD patients that in
majority are in the bottom left corner seem to be more well
separated with DTW_6 than with DTW.
Figure 4 displays the absolute contributions of the 36 fea-
tures on the top three components retrieved with both
connectivity measures. The first component for DTW_6
shows high connectivity values on the matrix diagonal, cor-
responding to the short-range connectivity (intra-region).
This observation is confirmed by the average contributions
(Cr) of short-, mid-, and long-range connectivity values re-
ported in Table 2. Indeed, with DTW_6, the first component
is mostly defined by short-range connectivity (Cr=0.458)
and mid-range connectivity (Cr=0.377). Long-range values
are less correlated to the first component (Cr=0.165).
The second component of DTW_6 visually presents ho-
mogeneous connectivity values, with slightly higher values
in the long-range. Notably, in Table 2, the second com-
ponent is mostly defined by long-range connectivity va-
lues (Cr=0.477) and mid-range values (Cr=0.321), and less
by short-range values (Cr=0.211). The contribution of the
short-range is even lower (Cr=0.166) on the third com-
ponent that is mainly correlated to mid- and long-range
connectivity.
By contrast, with DTW, the three components are charac-
terized similarly in terms of long-, mid- and short-range
connectivity, with high contribution of long- and mid-range,
and low contribution of short-range connectivity.
These results show that the principal components convey
relevant information in terms of connectivity when consi-
dering DTW_6, bringing a fine characterization of indivi-
duals.

TABLE 2 – Contributions of short-, mid- and long-range on
the top three components of the PCA space for DTW_6 and
DTW. PC : principal component ; SR : Short-range, MR :
Mid-range, LR : Long-range.

Connectivity PC SR MR LR

DTW_6
1 0.458 0.377 0.165
2 0.211 0.321 0.477
3 0.166 0.413 0.421

DTW
1 0.263 0.306 0.432
2 0.276 0.395 0.330
3 0.210 0.370 0.420



(a) (b) (c)

(d) (e) (f)

FIGURE 1 – Square Root of average Euclidean Distance computed at different SNR values for DTW_6 (red), DTW (green)
and PLI (blue) in all frequency bands.

(a) (b)

(c) (d)

(e) (f)

FIGURE 2 – Connectivity matrices of three SCI patients
(one patient per row) with DTW_6 (on the left) and DTW
(on the right) in Theta 2.

4 Discussion and Conclusion
The intrinsic noisy nature of EEG signals and their low
SNR make the extraction of efficient features a challenge
for EEG data analysis and interpretation. Comparatively to
PLI that is widely used in the literature, both DTW mea-
sures, with and without the warping window constraint,
show better robustness to added Gaussian white noise. Ne-
vertheless, no difference has been observed between the
two DTW measures in terms of noise resilience. DTW
consists in a nonlinear time-warping alignment between
two time series. More precisely, it is an optimization algo-
rithm that relies on finding the optimal temporal matching
between two signals, before computing the similarity. This
infers to DTW a temporal elasticity that makes it more ro-
bust against noise.
Then, we studied the added value of considering Sakoe-
Chiba constraint in the computation of connectivity. We
found that connectivity matrices obtained with DTW_6 are
visually more contrasted than those obtained with uncons-
trained DTW (i.e. DTW). This points out that integrating
Sakoe-Chiba constraint leads to fine and relevant connec-
tivity matrices in terms of information content. This is be-
cause when using the Sakoe-Chiba constraint, we force the
algorithm to search for temporal alignments that are phy-
sically realistic. When no temporal constraint is used, two
observations in the two signals can be matched no matter
how far apart they are in time. Consequently, alignments
that deviate from the true correspondence between the two
signals appear, decreasing the DTW score in an unrealis-
tic way. For example, a matching of two observations that
are separated of 1 second in time is very unlikely. Setting



(a) (b)

FIGURE 3 – Distribution of patients on the first two components of PCA for (a) DTW_6 and (b) DTW.

(a) (b) (c) (d) (e) (f)

FIGURE 4 – Absolute contributions of the 36 variables on the top three components with DTW_6 (a, b, c) and DTW (d, e, f).

the Sakoe-Chiba constraint at 6 allows a matching between
points of two signals that are 6/256 ≈ 0.02s = 20ms apart.

The multivariate analysis of SCI, AD and VaD patients
highlights a better visual distinction between the three
classes with DTW_6 in the PCA space spanned by the first
two principal components. Even if we only consider two
components which might not be representative of the whole
set of selected components, we can say that the two com-
ponents with maximum variance allow a better separation
between classes with DTW_6 than with DTW.

When looking at the contributions of the features and the
proportions of short-, mid- and long-range connectivities on
the top three components, we find that DTW_6 brings out
principal components that are more indicative of a certain
range of connectivity. Indeed, for DTW_6, the first com-
ponent is strongly associated with short- and mid-range
connectivity. This result is not observed with any of the first
three components obtained with DTW. The second com-
ponent is strongly associated with mid- and long-range for
DTW_6, and with a mix of the three connectivity ranges
for DTW. In the third component, we observe a very low
contribution of the short-range connectivity for DTW_6. It
is also the case for DTW but with more balanced contri-
butions . These results highlight the effectiveness of using
Sakoe-Chiba constraint in finely characterizing the functio-
nal connectivity in SCI, AD and VaD patients.

To conclude, DTW with narrow Sakoe-Chiba band is an in-
teresting alternative for connectivity assessment in EEG :
it is quite robust to noise and conveys fine and relevant in-
formation on functional connectivity. In future research, we
will extend the use of DTW with Sakoe-Chiba constraint to
study connectivity in patients with heterogeneous profiles.
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