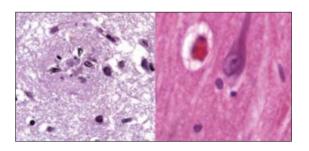

This research was partially funded by Hi! PARIS Center on Data Analytics and Artificial Intelligence


Is DTW resilient to noise and effective for EEG functional connectivity assessment?


Maxime Bedoin, Nesma Houmani, Rita Yabouri, Jerome Boudy, Kiyoka Kinugawa

Maladies Neurodégénératives et Electroencéphalographie

- Maladie d'Alzheimer (AD)
- · Problèmes Subjectifs Cognitifs (SCI)
- Démence Vasculaire (VaD)
- Électroencéphalographie (EEG)
- . Connectivité [1, 2, 3, 4]
- . Bruit

Données utilisées pour l'étude

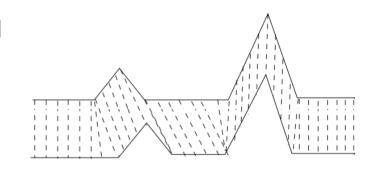
Patients:

- 32 SCI
- 46 Mild AD
- 17 VaD

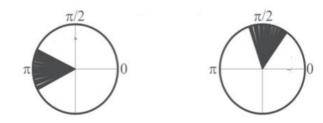
Caractéristiques:

- 20 secondes par signal,
- Yeux fermés, repos,
- Fs = 256Hz,
- 30 électrodes: Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FC7, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz, and O2,
- 6 bandes de fréquence :
 - delta [1-4] Hz,
 - theta 1 [4-6] Hz,
 - theta 2 [6-8] Hz,
 - alpha 1 [8-10],
 - alpha 2 [10-12] Hz,
 - beta [12-30] Hz.

Méthodologie utilisée pour analyser les données

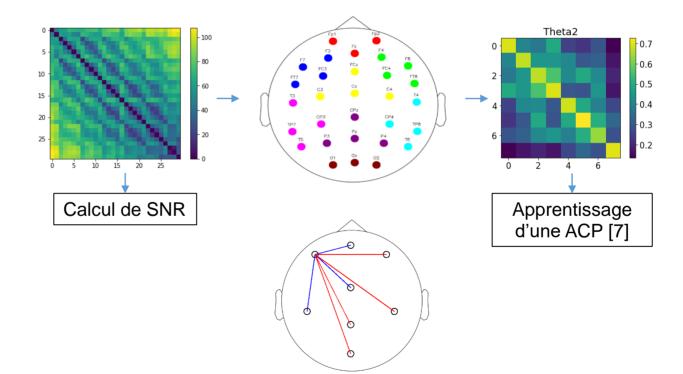

$$SNR = 10 \log_{10}(\frac{P_{signal}}{P_{bruit}})$$

Pour un certain SNR:

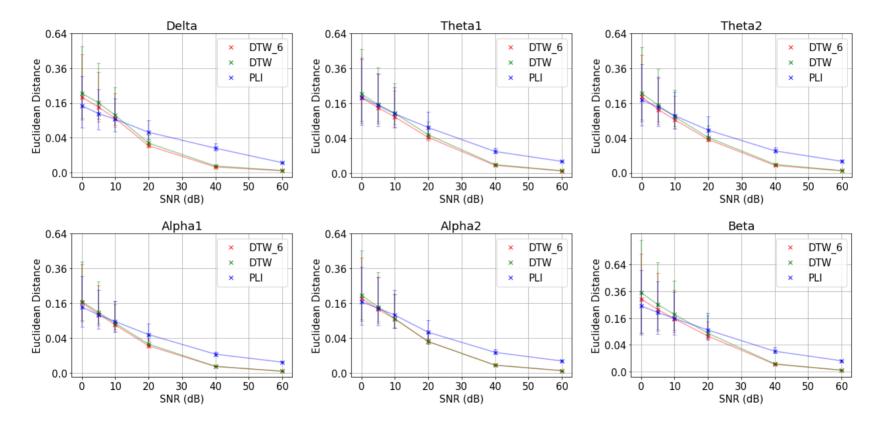

- On calcule la puissance du signal
- On calcule la puissance du bruit nécessaire pour obtenir ce SNR
- On additionne signal et bruit
- On filtre dans les bandes de fréquence Delta (1-4Hz), Theta 1 (4-6Hz), Theta 2 (6-8Hz), Alpha 1 (8-10Hz), Alpha 2(10-12Hz) et Beta (12-30Hz).

Méthodologie utilisée pour analyser les données

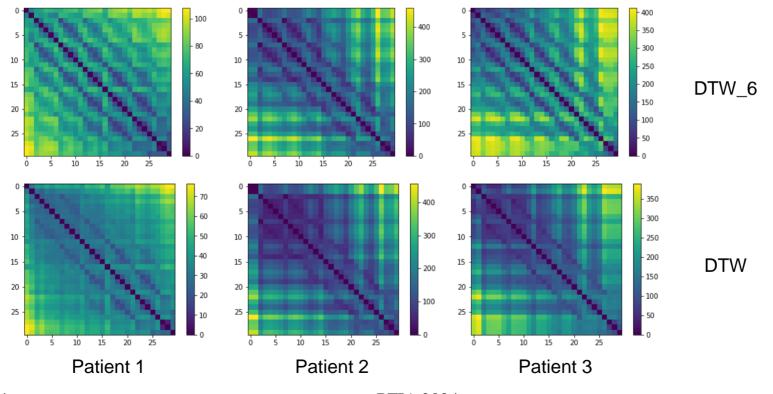
- DTW : distance élastique obtenue avec de la programmation dynamique [5]
- Construction de la matrice des coordonnées (0, 0) à (N, N).
- Contrainte de Sakoe-Chiba : restreint le décalage des assignements
 → On calcule une DTW sans contrainte (DTW) et une autre avec une contrainte de Sakoe-Chiba de 6 (DTW_6) [6]



- PLI = $| < sign[\Delta \Phi(tk)] > | [4]$
- Quantifie les différences de phase non-nulles entre 2 signaux EEG
- · Peu sensible à la conduction volumique

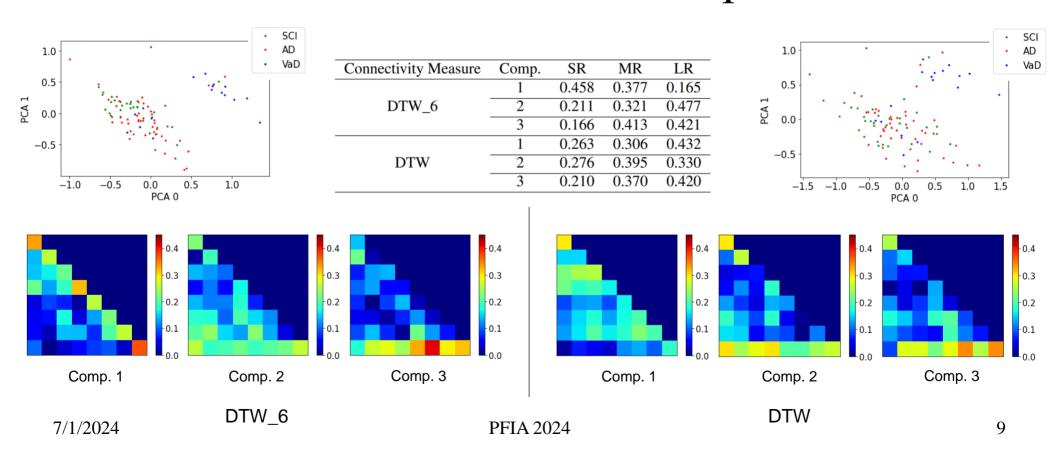

Méthodologie utilisée pour analyser les données

8 régions corticales



- . 3 voisinages:
 - . Short-range
 - . Mid-range
 - . Long-range

Résultats : Quantification de la résilience au bruit



Résultats : Impact de la contrainte de Sakoe-Chiba sur la construction de l'espace d'ACP

7/1/2024 PFIA 2024

Résultats : Impact de la contrainte de Sakoe-Chiba sur la construction de l'espace d'ACP

Discussion et Conclusion

- La DTW semble plus résiliente que la PLI pour les SNR usuels (SNR entre 5 et 40 dB)
- La PLI pourrait être plus efficace dans des environnements très bruités (SNR < 5 dB)
- La contrainte de Sakoe-Chiba améliore la cohérence de l'ACP (elle permet d'aligner des points qui sont séparés de 20ms maximum)
- Cela semble être important :
 - Pour avoir un espace d'ACP qui sépare mieux les classes
 - Pour avoir une meilleure cohérence avec une organisation en voisinages

→ L'utilisation de la DTW en tant que mesure de connectivité est possible et paraît plus prometteuse avec une contrainte de Sakoe-Chiba

Bibliographie

- [1] Abazid, M. (2022). Topological study of the brain functional organization at the early stages of Alzheimer's disease using electroencephalography. These de doctorat, Institut polytechnique de Paris.
- [2] Briels, C. T. et al. (2020). Reproducibility of EEG functional connectivity in Alzheimer's disease. Alzheimer's Research & Therapy, 12(1):68.
- [3] Jeong, J. et al. (2001). Mutual information analysis of the EEG in patients with Alzheimer's disease. Clinical Neurophysiology, 112(5):827–835.
- [4] Stam, C. J. et al. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11):1178–1193
- [5] Senin, P. (2008). Dynamic time warping algorithm review.
- [6] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49.
- [7] Mackiewicz, A. and Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19(3):303–342