

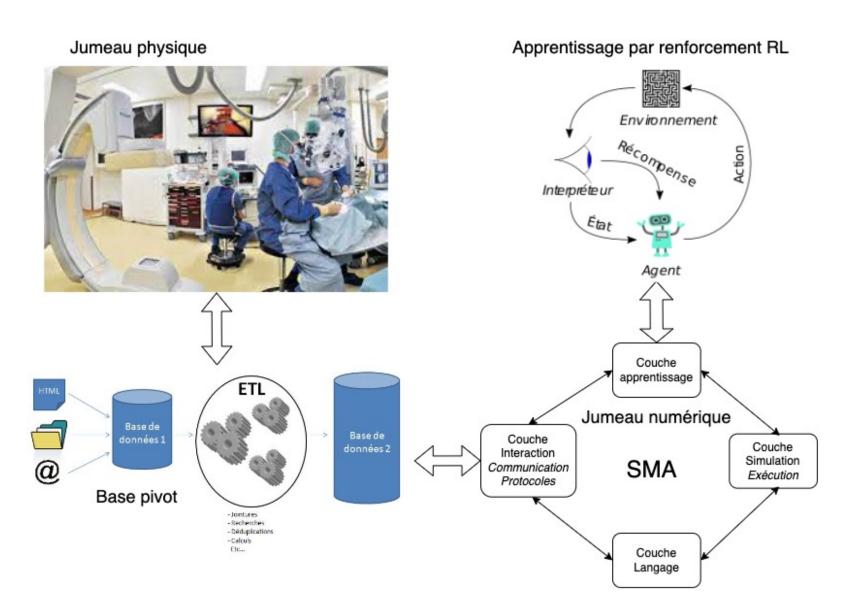
PRIA: Prédiction des Risques avec l'Intelligence Artificielle

Sommaire

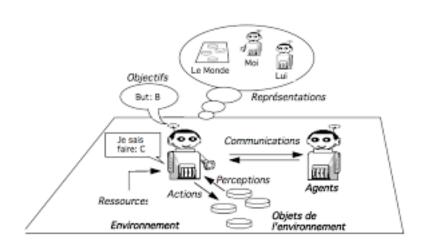
Le projet

Notre architecture

SMA


AR (RL)

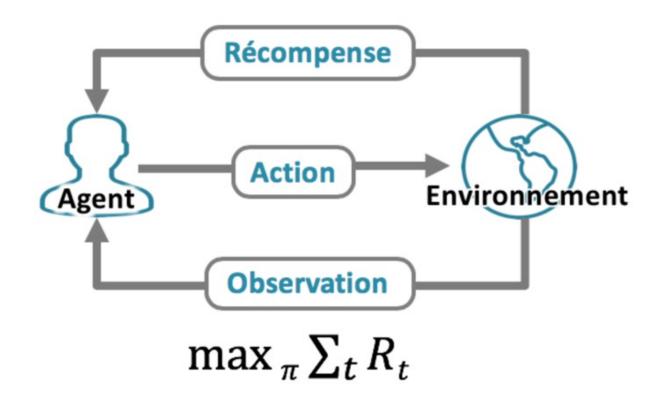
Conclusion et perspectives



Architecture : SMA apprenant

SMA selon Ferbert

- Chaque agent possède des informations et des capacités à résoudre des problèmes limités tel que :
 - Le contrôle global du SMA soit impossible.
 - Les données soient décentralisées;
 - Les calculs soient asynchrones (chaque agent peut effectuer des calculs indépendamment des autres).



Espèce	Attributs	Commentaires
Personnel	intention	opérer un patient dans des conditions de sécurité optimales
	desire	utiliser les ressources humaines et matérielles (personal, material)
	belief	mesures utiles à la prise de décision (monitoring, seuils d'alerte)
	fatigue	taux de fatigue (échelle allant de 1 légèrement fatigué à 5 épuisé)
	movement	type de mouvement (déplacement : <i>move</i> ou sur place <i>in_situ</i>)
	qty_mvt	quantité de mouvement (mesure des distances parcourues, ou
		de la gestuelle (quantité de gestes))
	infected	booléen
	experience	junior, senior

Apprentissage par renforcement (AR)

Guidage de l'apprentissage afin d'améliorer les performances prédictives

Apprentissage par renforcement: 4 étapes

1. L'état initial de l'environnement (S) :

 S_0

- 1. Actions possibles dans chaque état de l'environnement (A) :
 - A(s)l'ensemble des actions possibles dans l'état s.
- 2. Récompense associée à chaque action dans chaque état de l'environnement (R) :

R(s,a) où s est l'état et a est l'action.

3. Règles de transition (T) :

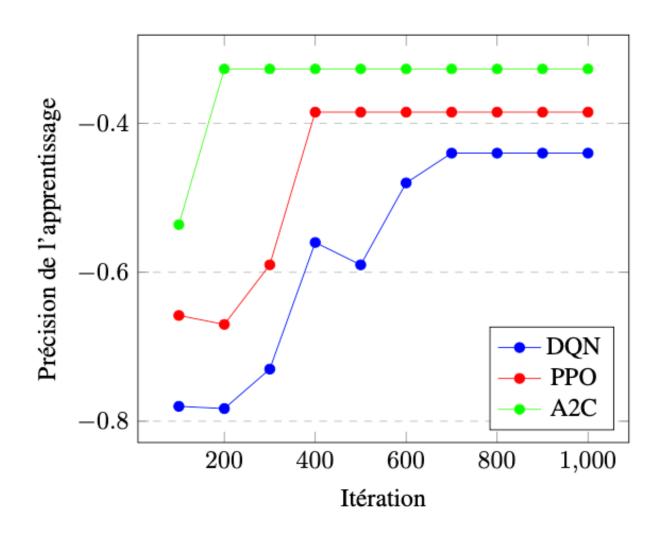
 $P(s' \mid s, a)$, où s' est le nouvel état étant donné l'action a dans l'état s.

4. Objectif de l'agent :

Maximiser la récompense totale à long terme : maximisation de la valeur d'un état (V(s)) ou d'une action Q(s,a)

Exemple AR dans notre contexte

- Environnement: SMA
- 2. Agent : Entité virtuelles qui réifient les entités physiques du bloc. Agent patient avec un attribut surveillance de la FC ...
- 3. Etat : Etat de l'environnement donné par un ensemble de variables surveillées
- 4. Action : Ajuster les seuils en fonction déclenchement alerte. Ajuster le nombre de cycles ...
- 5. Récompenses : L'objectif est de maximiser les récompenses pour mieux alerter et mieux prédire.


Nos premières expérimentations : contexte

- Comparatif entre 3 algo AR: DQN,PPO, A2C
- Modélisation sur 3 types agents : patient, praticiens, particules
- Métriques :
 - Précision d'apprentissage (indicateur de performance optimale optimal)
 - Vitesse d'apprentissage (taux de convergence récompense moyenne)
 - Robustesse (mesure des variations de la précision)
- Itérations: 1000
- Calcul:
 - $rec = -MSE = -(\frac{1}{n}\sum_{i=1}^{n}(y_i \hat{y}_i)^2)$

 y_i : valeur prédite par sma, $\hat{y_i}$: valeur prédite par jumeau physique, n: nombre d'itérations (synchronisations)

Nos premières expérimentations : résultats

Résultats obtenus sans apprentissage présentent des valeurs comprises entre -2,287 et -4,0757,

Conclusion et perspectives

- Notre architecture couple un SMA avec un modèle d'apprentissage par renforcement apte à :
 - Réifier le réel
 - Optimiser les attendus du simulateur (alerter, prédire l'évolution du système)
- Nous envisageons (à moyen terme) de mettre en œuvre en situation réelle.
 D'intégrer l'apprentissage profond et/ou les séries temporelles pour optimiser la prédictivité de l'évolution du système.